organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2-[(1-oxo-1H-isochromen-3-yl)methyl]benzoate

Mehmet Akkurt,^a Sema Öztürk Yıldırım,^a* Milen G. Bogdanov,^b Yavor N. Mitrev^b and Frank W. Heinemann^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bFaculty of Chemistry, University of Sofia, 1, James Bouchier blv., 1164 Sofia, Bulgaria, and ^cInstitut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen, Germany Correspondence e-mail: ozturk@erciyes.edu.tr

Received 27 April 2007; accepted 30 April 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.098; data-to-parameter ratio = 17.7.

In the nonplanar title compound, C₁₈H₁₄O₄, the dihedral angle between the isochromene and benzene ring systems is 83.32 (6)°. The crystal structure is stabilized by intra- and intermolecular $C-H \cdots O$ interactions, the latter resulting in centrosymmetric dimers.

Related literature

For related literature, see: Bogdanov et al. (2007); Burdzhiev & Stanoeva (2006); Dobson & Gerkin (1996); Kokila et al. (1996); Bogdanov & Palamareva (2004); Kandinska et al. (2006); Allen et al. (1987).

Experimental

Crystal data

 $C_{18}H_{14}O_4$ $M_r = 294.29$ Triclinic, P1 a = 8.1628 (7) Å b = 8.8981 (8) Å c = 11.0236(9) Å $\alpha = 105.048 \ (7)^{\circ}$ $\beta = 108.266 \ (6)^{\circ}$

 $\gamma = 97.981 \ (7)^{\circ}$ V = 712.78 (12) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^-$ T = 200 K $0.21 \times 0.20 \times 0.15$ mm

Data collection

Bruker-Nonius KappaCCD diffractometer Absorption correction: multi-scan

(SADABS; Sheldrick, 2002) $T_{\min} = 0.980, T_{\max} = 0.986$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	200 parameters
$vR(F^2) = 0.098$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
3545 reflections	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

16802 measured reflections

 $R_{\rm int} = 0.046$

3545 independent reflections

2478 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C10-H10A···O3	0.97	2.39	2.8706 (18)	110
C15-H15···O4	0.93	2.34	2.6766 (19)	101

C10-H10A···O3	0.97	2.39	2.8706 (18)	110	
C15-H15···O4	0.93	2.34	2.6766 (19)	101	
$C3-H3\cdots O1^i$	0.93	2.58	3.3178 (19)	136	

Symmetry code: (i) -x, -y, -z + 1.

Data collection: COLLECT (Nonius, 1999); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD and SADABS (Sheldrick, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997): molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2399).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Bogdanov, M. G., Gocheva, B. T., Dimitrova, D. B. & Palamreva, M. D. (2007). J. Heterocycl. Chem. 44, 673-677.

Bogdanov, M. G. & Palamareva, M. D. (2004). Tetrahedron, 60, 2525-2530.

- Burdzhiev, N. T. & Stanoeva, E. R. (2006). Tetrahedron, 62, 8318-8326.
- Dobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 3081-3083.

Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kandinska, M. I., Kozekov, I. D. & Palamareva, M. D. (2006). Molecules, 11, 403-414.
- Kokila, M. K., Puttaraja, Kulkarni, M. V. & Shivaprakash, N. C. (1996). Acta Cryst. C52, 2078-2081.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, o2824 [doi:10.1107/S1600536807021447]

Methyl 2-[(1-oxo-1H-isochromen-3-yl)methyl]benzoate

M. Akkurt, S. Ö. Yildirim, M. G. Bogdanov, Y. N. Mitrev and F. W. Heinemann

Comment

As a part of our systematic studies on the reactions of anhydrides with compounds containing activated double bonds (Burdzhiev & Stanoeva 2006; Kandinska *et al.*, 2006) we focused our attention on the reactions of homophthalic anhydride with carbonyl compounds (Bogdanov & Palamareva 2004; Bogdanov *et al.*, 2007). The title compound (I) was synthesized while searching for new antibiotics with an isocoumarin core. In this paper, we report our X-ray crystallographic studies of (I).

A displacement ellipsoid plot with the atomic numbering scheme of the title compound (I) is shown in Fig. 1. The bond lengths and angles observed in (I) are normal (Allen *et al.*, 1987). The isochromene system (C1—C9/O1/O2) of the molecule is planar. The dihedral angle between the benzene ring C2—C7 and the fused pyran ring in the isochromene system is $3.56 (6)^{\circ}$. The average deviation of these atoms from the mean plane of the coumarin system is -0.066 (1) Å for atom C1; this value is in agreement with those found in analogous coumarin derivatives (Dobson & Gerkin, 1996; Kokila *et al.*, 1996). The isochromene and benzene ring rings are nearly perpendicular to each other [dihedral angle = $83.32 (6)^{\circ}$].

In the crystal structure of (I), there are two acute intramolecular C—H…O interactions (Table 1). An intermolecular C—H…O bond results in inversion dimers (Fig. 2).

Experimental

Compound (I) was synthesized by the reaction between homophthalic anhydride and paraformaldehyde in boiling pyridine and subsequent treatment of the isolated carboxylic acid with ether solution of diazomethane. After working up the reaction mixture, compound crystallized as colourless prisms from ethyl acetate (yield 0.2 g, 80 %; m.p. 375–376 K). Analysis, calculated for $C_{18}H_{14}O_4$: C 73.46, H 4.79 %; found: C 73.31, H 4.46 %. The product was characterized by ¹H NMR, MS and IR spectra. Single crystals of (I) were obtained by slow evaporation of a solution of in a chloroform–ethyl acetate mixture (3:1 v/v) at room temperature.

IR (CHCl₃) 1600 cm⁻¹(ArH), 1650 cm⁻¹ (C=C), 1710 cm⁻¹ (C=O), 1715 cm⁻¹ (C=O). The mass spectrum was recorded on Trace DSQ (Termo-Finnigan) instrument with EI (70 eV), equipped with quadruple EI mass analyzer. MS: m/z (%) 294 (4), 262 (73), 234 (100), 219 (6), 206 (20), 178 (61), 145 (3), 133 (7), 117 (17), 89 (74). The ¹H NMR spectrum of (I) was obtained on a Bruker Avance DRX250 spectrometer at 250.13 MHz in CDCl₃ at 293 K. ¹H NMR (250 MHz, CDCl₃) $\delta = 3.64$ (s, 3H, *OCH*₃), 4.08 (s, 2H, *-CH*₂-), 5.98 (s, 1H, *H-vinyl*), 7.10-7.45 (m, 5H, *Ph*—*H*), 7.60 (dt, 1H, J= 1.3 and 7.5 Hz, *Ph*—*H*), 7.92 (dd, 1H, J= 1.5 and 7.5 Hz, *Ph*—*H*), 8.18 (dd, 1H, J= 1.5 and 7.8 Hz, *Ph*—*H*).

Refinement

The H atoms were placed in idealized positions (C—H = 0.93-0.97 Å) and treated as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. View of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. The intra molecular C—H \cdots O interactions are shown as dashed lines.

Fig. 2. View of the hydrogen bonding diagram of (I). Dashed lines show intermolecular C—H···O hydrogen bonding interactions. For clarity, H atoms not involved in this type hydrogen bonding have been omitted.

Methyl 2-[(1-oxo-1H-isochromen-3-yl)methyl]benzoate

Crystal data C₁₈H₁₄O₄ Z = 2 $M_r = 294.29$ $F_{000} = 308$ Triclinic, PT $D_{\rm x} = 1.371 {\rm Mg m}^{-3}$ Mo Kα radiation Hall symbol: -P 1 $\lambda = 0.71073 \text{ Å}$ a = 8.1628 (7) Å Cell parameters from 121 reflections *b* = 8.8981 (8) Å $\theta = 6-20^{\circ}$ c = 11.0236 (9) Å $\mu = 0.10 \text{ mm}^{-1}$ $\alpha = 105.048 (7)^{\circ}$ T = 200 K $\beta = 108.266 \ (6)^{\circ}$ Prism, colourless $0.21\times0.20\times0.15~mm$ $\gamma = 97.981 \ (7)^{\circ}$ $V = 712.78 (12) \text{ Å}^3$

Data collection

Bruker–Nonius KappaCCD diffractometer	3545 independent reflections
Radiation source: fine-focus sealed tube	2478 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.046$

Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 28.5^{\circ}$
T = 200 K	$\theta_{\min} = 3.7^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)	$k = -11 \rightarrow 11$
$T_{\min} = 0.980, \ T_{\max} = 0.986$	$l = -14 \rightarrow 14$
16802 measured reflections	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0417P)^{2} + 0.1587P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$R[F^2 > 2\sigma(F^2)] = 0.042$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.098$	$\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.01	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
3545 reflections	Extinction correction: none
200 parameters	
Primary atom site location: structure-invariant direct methods	
Secondary atom site location: difference Fourier map	
Hydrogen site location: inferred from neighbouring sites	
5105	

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F² for ALL reflections except those flagged by the user for potential systematic errors. Weighted Rfactors wR and all goodnesses of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.18577 (13)	0.16525 (13)	0.44383 (11)	0.0383 (3)
02	0.46676 (11)	0.29825 (11)	0.53778 (9)	0.0263 (3)
O3	0.71541 (13)	0.62739 (13)	0.86170 (11)	0.0389 (3)
O4	0.96272 (13)	0.79415 (13)	1.02380 (11)	0.0402 (3)
C1	0.33053 (16)	0.17680 (16)	0.52388 (13)	0.0254 (4)
C2	0.37572 (16)	0.07659 (15)	0.60971 (12)	0.0222 (3)
C3	0.24074 (17)	-0.03931 (16)	0.60986 (14)	0.0286 (4)
C4	0.28196 (18)	-0.13486 (16)	0.68940 (15)	0.0312 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C5	0.45829 (19)	-0.11968 (17)	0.76684 (15)	0.0329 (4)
C6	0.59279 (17)	-0.00575 (16)	0.76802 (14)	0.0294 (4)
C7	0.55308 (16)	0.09646 (14)	0.69088 (12)	0.0214 (3)
C8	0.68633 (16)	0.22290 (15)	0.69299 (13)	0.0232 (3)
C9	0.64026 (16)	0.32037 (15)	0.62138 (12)	0.0217 (3)
C10	0.75531 (17)	0.46250 (16)	0.61556 (13)	0.0262 (4)
C11	0.94433 (16)	0.50474 (15)	0.71511 (13)	0.0233 (4)
C12	1.07127 (18)	0.44492 (16)	0.66982 (15)	0.0296 (4)
C13	1.24714 (19)	0.47860 (17)	0.75392 (16)	0.0338 (4)
C14	1.30077 (18)	0.57203 (17)	0.88678 (15)	0.0311 (4)
C15	1.17855 (17)	0.63349 (16)	0.93482 (14)	0.0285 (4)
C16	1.00054 (16)	0.60148 (15)	0.85036 (13)	0.0237 (4)
C17	0.87454 (17)	0.67161 (16)	0.90832 (14)	0.0268 (4)
C18	0.8566 (2)	0.8684 (2)	1.09349 (17)	0.0446 (5)
Н3	0.12320	-0.05150	0.55610	0.0340*
H4	0.19200	-0.20970	0.69150	0.0370*
Н5	0.48590	-0.18690	0.81840	0.0390*
Н6	0.71020	0.00320	0.82020	0.0350*
H8	0.80510	0.23650	0.74460	0.0280*
H10A	0.70400	0.55400	0.63380	0.0320*
H10B	0.75680	0.44060	0.52510	0.0320*
H12	1.03660	0.38060	0.58050	0.0360*
H13	1.32920	0.43810	0.72070	0.0410*
H14	1.41860	0.59370	0.94390	0.0370*
H15	1.21500	0.69700	1.02460	0.0340*
H18A	0.78230	0.91870	1.03860	0.0670*
H18B	0.93340	0.94750	1.17750	0.0670*
H18C	0.78370	0.78820	1.11060	0.0670*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0211 (5)	0.0427 (6)	0.0448 (6)	0.0025 (4)	0.0005 (4)	0.0207 (5)
O2	0.0201 (4)	0.0266 (5)	0.0291 (5)	0.0018 (4)	0.0039 (4)	0.0123 (4)
O3	0.0216 (5)	0.0437 (6)	0.0452 (6)	0.0064 (4)	0.0110 (5)	0.0064 (5)
O4	0.0287 (5)	0.0463 (7)	0.0345 (6)	0.0084 (5)	0.0111 (4)	-0.0040 (5)
C1	0.0190 (6)	0.0251 (6)	0.0280 (7)	0.0024 (5)	0.0064 (5)	0.0061 (5)
C2	0.0213 (6)	0.0205 (6)	0.0222 (6)	0.0027 (5)	0.0082 (5)	0.0035 (5)
C3	0.0194 (6)	0.0265 (7)	0.0350 (8)	0.0001 (5)	0.0086 (6)	0.0064 (6)
C4	0.0279 (7)	0.0251 (7)	0.0393 (8)	-0.0026 (6)	0.0151 (6)	0.0095 (6)
C5	0.0351 (8)	0.0273 (7)	0.0362 (8)	0.0015 (6)	0.0108 (6)	0.0160 (6)
C6	0.0228 (7)	0.0300 (7)	0.0318 (7)	0.0024 (5)	0.0043 (6)	0.0134 (6)
C7	0.0208 (6)	0.0194 (6)	0.0211 (6)	0.0015 (5)	0.0073 (5)	0.0040 (5)
C8	0.0166 (6)	0.0249 (6)	0.0241 (6)	0.0011 (5)	0.0033 (5)	0.0085 (5)
C9	0.0183 (6)	0.0233 (6)	0.0200 (6)	0.0018 (5)	0.0060 (5)	0.0041 (5)
C10	0.0248 (7)	0.0264 (7)	0.0242 (7)	-0.0003 (5)	0.0049 (5)	0.0111 (5)
C11	0.0229 (6)	0.0191 (6)	0.0271 (7)	-0.0015 (5)	0.0080 (5)	0.0108 (5)
C12	0.0318 (7)	0.0247 (7)	0.0320 (7)	0.0016 (6)	0.0152 (6)	0.0070 (6)

C13	0.0286 (7)	0.0296 (7)	0.0488 (9)	0.0081 (6)	0.0218 (7)	0.0117 (7)
C14	0.0195 (6)	0.0323 (7)	0.0412 (8)	0.0049 (5)	0.0081 (6)	0.0159 (6)
C15	0.0238 (7)	0.0299 (7)	0.0280 (7)	0.0031 (5)	0.0058 (5)	0.0093 (6)
C16	0.0206 (6)	0.0227 (6)	0.0284 (7)	0.0020 (5)	0.0088 (5)	0.0109 (5)
C17	0.0243 (7)	0.0287 (7)	0.0274 (7)	0.0052 (5)	0.0085 (5)	0.0110 (6)
C18	0.0415 (9)	0.0511 (10)	0.0397 (9)	0.0175 (8)	0.0191 (7)	0.0039 (8)
Geometric para	meters (Å, °)					
01—C1		1.2046 (18)	C12-	C13	1.3	83 (2)
O2—C1		1.3789 (18)	C13-	C14	1.3	76 (2)
O2—C9		1.3799 (16)	C14-	C15	1.3	81 (2)
O3—C17		1.2003 (19)	C15-	C16	1.4	00 (2)
O4—C17		1.3470 (18)	C16-	C17	1.4	96 (2)
O4—C18		1.446 (2)	С3—	-H3	0.9	300
C1—C2		1.4619 (19)	C4—	-H4	0.9	300
C2—C3		1.401 (2)	C5—	-H5	0.9	300
C2—C7		1.4009 (19)	С6—	-H6	0.9	300
C3—C4		1.374 (2)	C8—	-H8	0.9	300
C4—C5		1.391 (2)	C10-	HI0A	0.9	700
C_{5}		1.381 (2)	C10-	-H10B	0.9	200
$C_0 - C_7$		1.4021(19) 1.4422(19)	C12-	-H12 H12	0.9	300
$C^{-}C^{-}C^{-}$		1.4423(19) 1.3330(19)	C13=		0.9	300
C9—C10		1 495 (2)	C15-	_H15	0.9	300
C10—C11		1.5131 (19)	C18-	-H18A	0.9	600
C11—C12		1.395 (2)	C18-	-H18B	0.9	600
C11—C16		1.4034 (18)	C18-	-H18C	0.9	600
O1···C3 ⁱ		3.3178 (19)	C3…]	H18B ^{vii}	3.1	000
O2…C10 ⁱⁱ		3.4198 (18)	C4…]	H18B ^{vii}	3.0	300
O3…C9		3.1009 (17)	C4…]	H10B ^{vi}	3.0	100
O3…C10		2.8706 (18)	C6…]	H15 ^v	2.9	200
$O1 \cdots H3^i$		2.5800	C7…]	H15 ^v	3.0	200
O1…H3		2.6200	C8…]	H15 ^v	2.8	200
O1…H12 ⁱⁱⁱ		2.7800	C11	·H8	2.6	400
O2…H10A ⁱⁱ		2.7200	C12.	··H4 ^x	3.0	200
O2…H13 ⁱⁱⁱ		2.7200	C13.	··H5 ^x	3.1	000
O3····H5 ^{iv}		2.6800	C13.	··H4 ^x	3.0	800
O3…H10A		2.3900	C14··	··H5 ^x	2.8	500
O3…H14 ⁱⁱⁱ		2.8500	C17.	··H10A	2.7	400
O3…H18A		2.6700	Н3…	01	2.6	200
O3…H18C		2.5800	Н3…	O1 ⁱ	2.5	800
O4…H15		2.3400	Н3…	H3 ⁱ	2.4	400
04…H6 ^v		2.7400	H4…	C12 ^{viii}	3.0	200
O4…H8 ^v		2.7700	H4…	C13 ^{viii}	3.0	800

C1···C13 ⁱⁱⁱ	3.487 (2)	H5···O3 ^{xi}	2.6800
C1···C6 ^{vi}	3.471 (2)	H5…C13 ^{viii}	3.1000
C1···C7 ^{vi}	3.3885 (19)	H5…C14 ^{viii}	2.8500
C2…C7 ^{vi}	3.5348 (18)	Н6…Н8	2.5400
C2…C8 ^{vi}	3.5272 (18)	H6···O4 ^v	2.7400
C3···C9 ^{vi}	3.551 (2)	H8…C11	2.6400
C3···O1 ⁱ	3.3178 (19)	Н8…Н6	2.5400
C3···C8 ^{vi}	3.585 (2)	H8····O4 ^v	2.7700
C4…C18 ^{vii}	3.482 (2)	H8…H15 ^v	2.5200
C5···C14 ^{viii}	3.591 (2)	H10A···O3	2.3900
C6…C1 ^{vi}	3.471 (2)	H10A…C17	2.7400
C7···C1 ^{vi}	3.3885 (19)	H10AO2 ⁱⁱ	2.7200
$C7 \cdots C2^{vi}$	3.5348 (18)	H10R 02	2.3500
C8···C12	3.589 (2)	H10B····C4 ^{vi}	3.0100
C8····C3 ^{vi}	3.585 (2)	H12…O1 ^{ix}	2.7800
C8····C2 ^{vi}	3.5272 (18)	H12···H10B	2.3500
C8···C16	3.566 (2)	H13O2 ^{ix}	2.7200
C9···O3	3.1009 (17)	H13···C1 ^{ix}	2.7400
C9····C3 ^{vi}	3.551 (2)	$H14\cdots O3^{ix}$	2.8500
C9···C17	3 5841 (19)	H14H14 ^{xii}	2,5900
C10···O3	2.8706 (18)	H15…O4	2.3400
C10…O2 ⁱⁱ	3.4198 (18)	H15C6 ^v	2.9200
C12···C8	3.589 (2)	H15…C7 ^v	3.0200
C13····C1 ^{ix}	3.487 (2)	H15C8 ^v	2.8200
$C14\cdots C5^{X}$	3.591 (2)	$H15\cdots H8^{v}$	2.5200
C16…C8	3.566 (2)	H18A···O3	2.6700
C17···C9	3.5841 (19)	H18B…C3 ^{vii}	3.1000
C18····C4 ^{vii}	3.482 (2)	H18B…C4 ^{vii}	3.0300
C1···H13 ⁱⁱⁱ	2.7400	H18C…O3	2.5800
C1—O2—C9	122.79 (11)	O3—C17—C16	126.23 (13)
C17—O4—C18	116.75 (12)	O4—C17—C16	111.11 (12)
01—C1—O2	116.89 (13)	С2—С3—Н3	120.00
01—C1—C2	126.47 (14)	С4—С3—Н3	120.00
O2—C1—C2	116.63 (11)	C3—C4—H4	120.00
C1—C2—C3	119.58 (12)	C5—C4—H4	120.00
C1—C2—C7	120.00 (12)	C4—C5—H5	120.00
C3—C2—C7	120.41 (12)	С6—С5—Н5	120.00
C2—C3—C4	120.03 (13)	С5—С6—Н6	120.00
C3—C4—C5	119.95 (14)	С7—С6—Н6	120.00
C4—C5—C6	120.68 (14)	С7—С8—Н8	120.00
С5—С6—С7	120.28 (13)	С9—С8—Н8	120.00
С2—С7—С6	118.58 (12)	C9-C10-H10A	109.00
С2—С7—С8	118.48 (12)	C9—C10—H10B	109.00

C6—C7—C8	122.93 (12)	C11-C10-H10A	109.00
С7—С8—С9	120.42 (13)	C11-C10-H10B	109.00
O2—C9—C8	121.38 (13)	H10A—C10—H10B	108.00
O2—C9—C10	109.93 (11)	C11—C12—H12	119.00
C8—C9—C10	128.69 (13)	C13—C12—H12	119.00
C9—C10—C11	113.11 (11)	С12—С13—Н13	120.00
C10-C11-C12	118.16 (12)	C14—C13—H13	120.00
C10-C11-C16	124.07 (12)	C13-C14-H14	120.00
C12—C11—C16	117.76 (13)	C15-C14-H14	120.00
C11—C12—C13	121.88 (14)	C14—C15—H15	120.00
C12-C13-C14	120.00 (15)	С16—С15—Н15	120.00
C13—C14—C15	119.60 (14)	O4—C18—H18A	109.00
C14—C15—C16	120.92 (13)	O4—C18—H18B	109.00
C11—C16—C15	119.83 (13)	O4—C18—H18C	109.00
C11—C16—C17	121.77 (12)	H18A—C18—H18B	110.00
C15—C16—C17	118.40 (12)	H18A—C18—H18C	109.00
O3—C17—O4	122.66 (14)	H18B—C18—H18C	110.00
C9—O2—C1—O1	-177.05 (12)	C6—C7—C8—C9	-177.53 (13)
C9—O2—C1—C2	4.02 (18)	C7—C8—C9—C10	176.46 (13)
C1—O2—C9—C8	0.80 (19)	С7—С8—С9—О2	-3.7 (2)
C1—O2—C9—C10	-179.31 (11)	O2—C9—C10—C11	174.24 (11)
C18—O4—C17—C16	-177.43 (13)	C8—C9—C10—C11	-5.9 (2)
C18—O4—C17—O3	2.2 (2)	C9—C10—C11—C16	-85.15 (17)
O1—C1—C2—C3	-4.7 (2)	C9—C10—C11—C12	95.29 (15)
O1—C1—C2—C7	175.15 (14)	C10-C11-C16-C15	179.86 (13)
O2—C1—C2—C3	174.12 (12)	C10-C11-C16-C17	0.3 (2)
O2—C1—C2—C7	-6.03 (18)	C12-C11-C16-C15	-0.6 (2)
C3—C2—C7—C6	2.30 (19)	C12-C11-C16-C17	179.84 (13)
C1—C2—C7—C6	-177.54 (12)	C16-C11-C12-C13	0.0 (2)
C1—C2—C7—C8	3.44 (18)	C10-C11-C12-C13	179.57 (14)
C3—C2—C7—C8	-176.72 (12)	C11-C12-C13-C14	0.8 (2)
C1—C2—C3—C4	179.53 (13)	C12—C13—C14—C15	-0.9 (2)
C7—C2—C3—C4	-0.3 (2)	C13-C14-C15-C16	0.3 (2)
C2—C3—C4—C5	-1.9 (2)	C14-C15-C16-C17	-179.95 (14)
C3—C4—C5—C6	2.0 (2)	C14-C15-C16-C11	0.5 (2)
C4—C5—C6—C7	0.0 (2)	C11—C16—C17—O3	18.3 (2)
C5—C6—C7—C8	176.83 (13)	C15—C16—C17—O4	18.30 (19)
C5—C6—C7—C2	-2.2 (2)	C11—C16—C17—O4	-162.11 (13)
C2—C7—C8—C9	1.45 (19)	C15—C16—C17—O3	-161.25 (15)

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*-1, *y*, *z*; (iv) *x*, *y*+1, *z*; (v) -*x*+2, -*y*+1, -*z*+2; (vi) -*x*+1, -*y*, -*z*+1; (vii) -*x*+1, -*y*+1, -*z*+2; (viii) *x*-1, *y*-1, *z*; (ix) *x*+1, *y*, *z*; (x) *x*+1, *y*+1, *z*; (xi) *x*, *y*-1, *z*; (xii) -*x*+3, -*y*+1, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H…4	D—H	H…4	$D \cdots A$	$D - H \cdots A$
$C10-H10A\cdots O3$	0.97	2.39	2,8706 (18)	110
C15—H15…O4	0.93	2.34	2.6766 (19)	101
C3—H3…O1 ⁱ	0.93	2.58	3.3178 (19)	136
Symmetry codes: (i) $-r - y - z + 1$				

Symmetry codes: (i) -x, -y, -z+1.

Fig. 1

